Probability

PSYC 573

University of Southern California January 18, 2022

History of Probability

- A mathematical way to study uncertainty/randomness
- Origin: To study gambling problems

Someone asks you to play a game. The person will flip a coin. You win $\$ 10$ if it shows head, and lose $\$ 10$ if it shows tail. Would you play?

Kolmogorov Axioms

For an event A_{i} (e.g., getting a "1" from throwing a die)

- $P\left(A_{i}\right) \geq 0$ [All probabilities are non-negative]
- $P\left(A_{1} \cup A_{2} \cup \cdots\right)=1$ [Union of all possibilities is 1]
- $P\left(A_{1}\right)+P\left(A_{2}\right)=P\left(A_{1}\right.$ or $\left.A_{2}\right)$ for mutually exclusive A_{1} and A_{2} [Addition rule]

Throwing a Die With Six Faces

$A_{1}=$ getting a one, $\ldots A_{6}=$ getting a six

- $P\left(A_{i}\right) \geq 0$
- $P($ the number is $1,2,3,4,5$, or 6$)=1$
- $P($ the number is 1 or 2$)=P\left(A_{1}\right)+P\left(A_{2}\right)$

Interpretations of Probability

Ways to Interpret Probability

- Classical: Counting rules
- Frequentist: long-run relative frequency
- Subjectivist: Rational belief

Note: there are other paradigms to interpret probability. See https://plato.stanford.edu/entries/probability-interpret/

Classical Interpretation

- Number of target outcomes / Number of possible "indifferent" outcomes
- E.g., Probability of getting "1" when throwing a die: 1 / 6

Frequentist Interpretation

- Long-run relative frequency of an outcome

Trial Outcome

Problem of the single case: Some events cannot be repeated

- Probability of Democrats/Republicans "winning" the 2022 election
- Probability of the LA Rams winning the 2022 Super Bowl
- Probability that the null hypothesis is true

Frequentist: probability is not meaningful for these

Subjectivist Interpretation

- State of one's mind; the belief of all outcomes
- Subjected to the constraints of:
- Axioms of probability
- That the person possessing the belief is rational

Describing a Subjective Belief

- Assign a value for every possible outcome
- Not an easy task
- Use a probability distribution to approximate the belief
- Usually by following some conventions
- Some distributions preferred for computational efficiency

Key to forming prior distributions

Probability Distribution

Probability Distributions

- Discrete outcome: Probability mass
- Continuous outcome: Probability density

Probability Density

- If X is continuous, the probability of X having any particular value $\rightarrow 0$
- E.g., probability a person's height is 174.3689 cm

Density:

$$
P\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{P\left(x_{0}<X<x_{0}+\Delta x\right)}{\Delta x}
$$

Normal Probability Density

Math

R Code

$$
P(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left[\frac{x-\mu}{\sigma}\right]^{2}\right)
$$

Some Commonly Used Distributions

Summarizing a Probability Distribution

Central tendency

The center is usually the region of values with high plausibility

- Mean, median, mode

Dispersion

How concentrated the region with high plausibility is

- Variance, standard deviation
- Median absolute deviation (MAD)

Interval

- One-sided
- Symmetric
- Highest density interval (HDI)

Probability with Multiple Variables

Multiple Variables

- Joint probability: $P(X, Y)$
- Marginal probability: $P(X), P(Y)$

>= 4 <= 3 Marginal (odd/even)

odd	$1 / 6$	$2 / 6$	$3 / 6$
even	$2 / 6$	$1 / 6$	$3 / 6$
Marginal $(>=4$ or $<=3)$	$3 / 6$	$3 / 6$	1

Continuous Variables

- Left: Continuous X, Discrete Y
- Right: Continuous X and Y

Conditional Probability

Knowing the value of B, the relative plausibility of each value of outcome A

$$
P\left(A \mid B_{1}\right)=\frac{P\left(A, B_{1}\right)}{P\left(B_{1}\right)}
$$

E.g., P(Alzheimer's) vs. P(Alzheimer's | family history)
E.g., Knowing that the number is odd

	$>=\mathbf{4}<=\mathbf{3}$	
odd	$1 / 6$	$2 / 6$
even	$z / 6$	$7 / 6$
Marginal $(>=4$ or $<=3)$	$3 / 6$	$3 / 6$

Conditional = Joint / Marginal

$$
>=4 \quad<=3
$$

odd
1/6
2/6
Marginal (>= 4 or $<=3) 3 / 6$
3/6
Conditional (odd)

$$
(1 / 6) /(3 / 6)=1 / 3(1 / 6) /(2 / 6)=2 / 3
$$

$P(A \mid B) \neq P(B \mid A)$

- P (number is six \mid even number) $=1 / 3$
- $P($ even number \mid number is six $)=1$

Another example: P (road is wet | it rains) vs. P (it rains | road is wet)

- Problem: Not considering other conditions leading to wet road: sprinkler, street cleaning, etc

Sometimes called the confusion of the inverse

Independence

A and B are independent if

$$
P(A \mid B)=P(A)
$$

E.g.,

- A : A die shows five or more
- B : A die shows an odd number
$P(>=5)=1 / 3 . P(>=5 \mid$ odd number $)=? P(>=5 \mid$ even number $)=?$
$P(<=5)=2 / 3 . P(<=5 \mid$ odd number $)=? P(>=5 \mid$ even number $)=?$

Law of Total Probability

From conditional $P(A \mid B)$ to marginal $P(A)$

- If $B_{1}, B_{2}, \cdots, B_{n}$ are all possibilities for an event (so they add up to a probability of 1), then

$$
\begin{aligned}
P(A) & =P\left(A, B_{1}\right)+P\left(A, B_{2}\right)+\cdots+P\left(A, B_{n}\right) \\
& =P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+\cdots+P\left(A \mid B_{n}\right) P\left(B_{n}\right) \\
& =\sum_{k=1}^{n} P\left(A \mid B_{k}\right) P\left(B_{k}\right)
\end{aligned}
$$

Example: Consider the use of a depression screening test for people with diabetes. For a person with depression, there is an 85% chance the test is positive. For a person without depression, there is a 28.4% chance the test is positive. Assume that 19.1% of people with diabetes have depression. If the test is given to 1,000 people with diabetes, around how many people will be tested positive?

Data source: https://doi.org/10.1016/s0165-0327(12)70004-6, https://doi.org/10.1371/journal.pone.0218512

