One Parameter Models

 PSYC 573University of Southern California
February 01, 2022

An Example of Bernoulli Data

Data (Subsample)

- Patients diagnosed with AIDS in Australia before 1 July 1991

state	sex	diag	death	status	T.categ
age					
VIC	M	$1991-03-05$	$1991-07-01$	A	hs
NSW	M	$1987-08-30$	$1988-03-11$	D	hs
QLD	M	$1989-10-09$	$1990-08-22$	D	hs
NSW	M	$1991-03-17$	$1991-07-01$	A	hs
NSW	M	$1986-04-12$	$1989-01-31$	D	hs
NSW	M	$1986-09-29$	$1987-03-25$	D	hs
NSW	M	$1989-08-24$	$1991-07-01$	A	hs
Other	F	$1988-10-19$	$1991-07-01$	A	id
NSW	M	$1990-04-07$	$1991-01-21$	D	hs
NSW	M	$1988-04-28$	$1990-04-07$	D	hs

Let's go through the Bayesian crank

Choose a Model: Bernoulli

Data: $y=$ survival status ($0=$ "A", $1=$ "D")
Parameter: $\theta=$ probability of "D"
Model equation: $y_{i} \sim \operatorname{Bern}(\theta)$ for $i=1,2, \ldots, N$

- The model states:
the sample data y follows a Bernoulli distribution with the common parameter θ

Bernoulli Likelihood

Notice that there is no subscript for θ :

- The model assumes each observation has the same θ
- I.e., the observations are exchangeable

$$
P\left(y_{1}, y_{2}, \ldots, y_{N}\right)=\theta^{z}(1-\theta)^{N-z}
$$

$z=$ number of "successes" ("D")

- $z=6$ in this illustrative sample

theta	likelihood
0.0	0.00000
0.1	0.00000
0.2	0.00003
0.3	0.00018
0.4	0.00053
0.5	0.00098
0.6	0.00119
0.7	0.00095
0.8	0.00042
0.9	0.00005
1.0	0.00000

Choosing Priors

Specify a Prior

When choosing priors, start with the support of the parameter(s)

- Values that are possible

Support for $\theta:[0,1]$

One Possible Option

Prior belief: θ is most likely to be in the range [.40, .60), and is 5 times more likely than any values outside of that range"

Conjugate Prior: Beta Distribution

Math R Code

$$
P(\theta \mid a, b) \propto \theta^{a-1}(1-\theta)^{b-1} I_{[0,1]}
$$

Conjugate Prior: yield posterior in the same distribution family as the prior

Some other conjugate distributions:
https://en.wikipedia.org/wiki/Conjugate_prior\#Table_of_conjugate_distributions

Two hyperparameters, a and b :

- $a-1$ = number of prior 'successes' (e.g., "D")
- $b-1$ = number of prior 'failures'

When $a>b$, more density to the right (i.e., larger θ), and vice versa

Mean $=a /(a+b)$
Concentration $=\kappa=a+b ; \uparrow \kappa, \downarrow$ variance, \uparrow strength of prior
E.g., A Beta(1, 1) prior means 0 prior success and 0 failure

- i.e., no prior information (i.e., noninformative)

Notes on Choosing Priors

- Give >0 probability/density for all possible values of a parameter
- When the prior contains relatively little information
- different choices usually make little difference
- Do a prior predictive check
- Sensitivity analyses to see how sensitive results are to different reasonable prior choices.

Getting the Posterior

Obtaining the Posterior Analytically

$$
P(\theta \mid y)=\frac{P(y \mid \theta) P(\theta)}{\int_{0}^{1} P\left(y \mid \theta^{*}\right) P\left(\theta^{*}\right) d \theta^{*}}
$$

The denominator is usually intractable
Conjugate prior: Posterior is from a known distribution family

- N trials and z successes
- $\operatorname{Beta}(a, b)$ prior
- $\Rightarrow \operatorname{Beta}(a+z, b+N-z)$ posterior
- $a+z-1$ successes
- $b+N-z-1$ failures

Back to the Example

$N=10, z=6$

Prior: Do you believe that the fatality rate of AIDS is 100\%? or 0\%?

- Let's use $\kappa=4$, prior mean $=0.5$, so $a=2$ and b
 = 2

Posterior Beta

$\theta \mid y \sim \operatorname{Beta}(2+6,2+4)$

R Code Density

```
ggplot(tibble(x = c(0, 1)), aes(x = x)) +
    stat_function(fun = dbeta,
            args = list(shape1 = 8, shape2 = 6)) +
    labs(title = "Beta(a = 8, b = 6)",
    x = expression(theta), y = "Density")
```


Summarizing the Posterior

If the posterior is from a known family, one can evalue summary statistics analytically

- E.g., $E(\theta \mid y)=\int_{0}^{1} \theta P(\theta \mid y) d \theta$

However, more often, a simulation-based approach is used to draw samples from the posterior

```
num_draws }\leftarrow100
sim_theta }\leftarrow rbeta(1000, shape1 = 8, shape2 = 6)
```


Statistic Common name

Value

mean	Bayes estimate/Expected a posteriori (EAP)	0.563
median	Posterior median	0.567
mode	Maximum a posteriori (MAP)	0.577
SD	Posterior SD	0.126
MAD	MAD	0.13
$80 \% \mathrm{Cl}$	(Equal-tailed) Credible interval	$[0.398$,
	$0.727]$	
$80 \% ~ H D I$		
	HDI/ Highest Posterior Density Interval (HPDI)	$[0.404$,
		$0.733]$

Use the Full Data

$1082 \mathrm{~A}, 1761 \mathrm{D} \rightarrow N=2843, z=1761$

Posterior: Beta(1763, 1084)

Posterior Predictive Check

Posterior Predictive Check

$\tilde{y}=$ new/future data
Posterior predictive: $P(\tilde{y} \mid y)=\int P(\tilde{y} \mid \theta, y) P(\theta \mid y) d \theta$
Simulate θ^{*} from posterior --> for each θ^{*}, simulate a new data set

If the model does not fit the data, any results are basically meaningless at best, and can be very misleading

Requires substantive knowledge and some creativity

- E.g., are the case fatality rates equal across the 4 state categories?

Posterior Predictive Check

Some common checks:

- Does the model simulate data with similar distributions as the observed data?
- e.g., skewness, range
- Subsets of observed data that are of more interest?
- e.g., old age group
- If not fit, age should be incorporated in the model

See an example in Gabry et al. (2019)

Using bayesplot

Plot R code

Darker line = observed proportion of "D"; histogram = simulated plausible statistics based on the model and the posterior

The model with one-parameter, which assumes exchangeability, does not fit those age 50+

- May need more than one θ

Other One-Parameter Models

Binomial Model

- For count outcome: $y_{i} \sim \operatorname{Bin}\left(N_{i}, \theta\right)$
- θ : rate of occurrence (per trial)
- Conjugate prior: Beta
- E.g.,
- y minority candidates in N new hires
- y out of N symptoms checked
- A word appears y times in a tweet of N number of words

Poisson Model

- For count outcome: $y_{i} \sim \operatorname{Pois}(\theta)$
- θ : rate of occurrence
- Conjugate prior: Gamma
- E.g.,
- Drinking y times in a week
- y hate crimes in a year for a county
- y people visiting a store in an hour

