
Markov Chain Monte Carlo III
PSYC 573

University of Southern California
February 24, 2022

Hamiltonian Monte Carlo (HMC)

2 / 15

From Hamiltonian mechanics

Use gradients to generate better proposal values

Results:

Higher acceptance rate
Less autocorrelation/higher ESS
Better suited for high dimensional problems

3 / 15

Gradients of Log Density

Consider just

Potential energy =

Which one has a higher potential energy?

σ2

− log P(θ)

4 / 15

HMC Algorithm

Imagine a marble on a surface like the log posterior

�. Simulate a random momentum (usually from a normal
distribution)

�. Apply the momentum to the marble to roll on the surface
�. Treat the position of the marble after some time as the

proposed value
�. Accept the new position based on the Metropolis step

i.e., probabilistically using the posterior density ratio

5 / 15

Leapfrog Integrator

Location and velocity constantly change

6 / 15

Leapfrog integrator

Solve for the new location using leapfrog steps
Larger , more accurate location
Higher curvature requires larger and smaller step size

Divergent transition: When the leapfrog approximation deviates
substantially from where it should be

L

L

L

7 / 15

No-U-Turn Sampler (NUTS)

Algorithm used in STAN

Two problems of HMC

Need �ne-tuning and step size
Wasted steps when the marble makes a U-turn

NUTS uses a binary search tree to determine and the step
size

The maximum treedepth determines how far it searches

See a demo here: https://chi-feng.github.io/mcmc-
demo/app.html

L

L

8 / 15

https://chi-feng.github.io/mcmc-demo/app.html

Stan

9 / 15

Stan

A language for doing MCMC sampling (and other related
methods, such as maximum likelihood estimation)

Current version (2.29): mainly uses NUTS

It supports a wide range of distributions and prior distributions

Written in C++ (faster than R)

10 / 15

Model:

Prior:

 is a half- distribution with df = 4
and scale = 3

Consider the example

wc_laptopi ∼ N(μ, σ)

μ ∼ N(5, 10)

σ ∼ t+
4 (0, 3)

t+
4 (0, 3) t

11 / 15

An example STAN model
data {
 int<lower=0> N; �� number of observations
 vector[N] y; �� data vector y
}
parameters {
 real mu; �� mean parameter
 real<lower=0> sigma; �� non�negative SD parameter
}
model {
 �� model
 y ~ normal(mu, sigma); �� use vectorization
 �� prior
 mu ~ normal(5, 10);
 sigma ~ student_t(4, 0, 3);
}
generated quantities {
 vector[N] y_rep; �� place holder
 for (n in 1�N)
 y_rep[n] = normal_rng(mu, sigma);
}

12 / 15

Components of a STAN Model

data : Usually a list of different types
int , real , matrix , vector , array
can set lower/upper bounds

parameters

transformed parameters : optional variables that are
transformation of the model parameters
model : de�nition of priors and the likelihood
generated quantities : new quantities from the model (e.g.,
simulated data)

13 / 15

RStan

https://mc-stan.org/users/interfaces/rstan

An interface to call Stan from R, and import results from STAN
to R

14 / 15

https://mc-stan.org/users/interfaces/rstan

Call rstan

library(rstan)
rstan_options(auto_write = TRUE) # save compiled STAN object
nt_dat �� haven��read_sav("https:��osf.io/qrs5y/download")
wc_laptop �� nt_dat$wordcount[nt_dat$condition �� 0] / 100
Data: a list with names matching the Stan program
nt_list �� list(
 N = length(wc_laptop), # number of observations
 y = wc_laptop # outcome variable (yellow card)
)
Call Stan
norm_prior �� stan(
 file = here("stan", "normal_model.stan"),
 data = nt_list,
 seed = 1234 # for reproducibility
)

15 / 15

R code Output

http://127.0.0.1:7630/hmc_stan.html?panelset=r-code#panelset_r-code
http://127.0.0.1:7630/hmc_stan.html?panelset=output#panelset_output

