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Hamiltonian Monte Carlo (HMC)
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From Hamiltonian mechanics

Use gradients to generate better proposal values

Results:

Higher acceptance rate
Less autocorrelation/higher ESS
Better suited for high dimensional problems
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Gradients of Log Density

Consider just 

Potential energy = 

Which one has a higher potential energy?

σ2

− log P(θ)
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HMC Algorithm

Imagine a marble on a surface like the log posterior

�. Simulate a random momentum (usually from a normal
distribution)

�. Apply the momentum to the marble to roll on the surface
�. Treat the position of the marble after some time as the

proposed value
�. Accept the new position based on the Metropolis step

i.e., probabilistically using the posterior density ratio
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Leapfrog Integrator

Location and velocity constantly change
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Leapfrog integrator

Solve for the new location using  leapfrog steps
Larger , more accurate location
Higher curvature requires larger  and smaller step size

Divergent transition: When the leapfrog approximation deviates
substantially from where it should be
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No-U-Turn Sampler (NUTS)

Algorithm used in STAN

Two problems of HMC

Need �ne-tuning  and step size
Wasted steps when the marble makes a U-turn

NUTS uses a binary search tree to determine  and the step
size

The maximum treedepth determines how far it searches

See a demo here: https://chi-feng.github.io/mcmc-
demo/app.html
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https://chi-feng.github.io/mcmc-demo/app.html


Stan
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Stan

A language for doing MCMC sampling (and other related
methods, such as maximum likelihood estimation)

Current version (2.29): mainly uses NUTS

It supports a wide range of distributions and prior distributions

Written in C++ (faster than R)
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Model:

Prior:

 is a half-  distribution with df = 4
and scale = 3

Consider the example

wc_laptopi ∼ N(μ, σ)

μ ∼ N(5, 10)

σ ∼ t+
4 (0, 3)

t+
4 (0, 3) t
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An example STAN model
data {
  int<lower=0> N;  �� number of observations
  vector[N] y;  �� data vector y
}
parameters {
  real mu;  �� mean parameter
  real<lower=0> sigma;  �� non�negative SD parameter
}
model {
  �� model
  y ~ normal(mu, sigma);  �� use vectorization
  �� prior
  mu ~ normal(5, 10);
  sigma ~ student_t(4, 0, 3);
}
generated quantities {
  vector[N] y_rep;  �� place holder
  for (n in 1�N)
    y_rep[n] = normal_rng(mu, sigma);
}
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Components of a STAN Model

data : Usually a list of different types
int , real , matrix , vector , array
can set lower/upper bounds

parameters

transformed parameters : optional variables that are
transformation of the model parameters
model : de�nition of priors and the likelihood
generated quantities : new quantities from the model (e.g.,
simulated data)
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RStan

https://mc-stan.org/users/interfaces/rstan

An interface to call Stan from R, and import results from STAN
to R
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https://mc-stan.org/users/interfaces/rstan


Call rstan

library(rstan)
rstan_options(auto_write = TRUE)  # save compiled STAN object
nt_dat �� haven��read_sav("https:��osf.io/qrs5y/download")
wc_laptop �� nt_dat$wordcount[nt_dat$condition �� 0] / 100
# Data: a list with names matching the Stan program
nt_list �� list(
  N = length(wc_laptop),  # number of observations
  y = wc_laptop  # outcome variable (yellow card)
)
# Call Stan
norm_prior �� stan(
    file = here("stan", "normal_model.stan"),
    data = nt_list,
    seed = 1234  # for reproducibility
)
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R code Output

http://127.0.0.1:7630/hmc_stan.html?panelset=r-code#panelset_r-code
http://127.0.0.1:7630/hmc_stan.html?panelset=output#panelset_output

