Hierarchical Models

PSYC 573

University of Southern California
March 3, 2022

Therapeutic Touch Example ($N=28$)

Data Points From One Person

y : whether the guess of which hand was hovered over was correct

Person S01

	S01
0	S01
0	S01
	S01
	S01
	S01
0	S01
	S01
	S01
	S01

Binomial Model

We can use a Bernoulli model:

$$
y_{i} \sim \operatorname{Bern}(\theta)
$$

for $i=1, \ldots, N$

Assuming exchangeability given θ, more succint to write
$z \sim \operatorname{Bin}(N, \theta)$
for $z=\sum_{i=1}^{N} y_{i}$

- Bernoulli: Individual trial
- Binomial: total count of "1"s

1 success, 9 failures

Posterior: $\operatorname{Beta}(2,10)$

Multiple People

We could repeat the binomial model for each of the 28 participants, to obtain posteriors for $\theta_{1}, \ldots, \theta_{28}$

But...

Do we think our belief about θ_{1} would inform our belief about θ_{2}, etc?

After all, human beings share 99.9\% of genetic makeup

Three Positions of Pooling

- No pooling: each individual is completely different; inference of θ_{1} should be independent of θ_{2}, etc
- Complete pooling: each individual is exactly the same; just one θ instead of $28 \theta_{j}$'s
- Partial pooling: each individual has something in common but also is somewhat different

No Pooling

Complete Pooling

θ

$\begin{array}{lllll}y_{1} & y_{2} & \cdots & y_{J-1} & y_{J}\end{array}$

Partial Pooling

Partial Pooling in Hierarchical Models

Hierarchical Priors: $\theta_{j} \sim \operatorname{Beta} 2(\mu, \kappa)$
Beta2: reparameterized Beta distribution

- mean $\mu=a /(a+b)$
- concentration $\kappa=a+b$

Expresses the prior belief:
Individual θ s follow a common Beta distribution with mean μ and concentration κ

How to Choose κ

If $\kappa \rightarrow \infty$: everyone is the same; no individual differences (i.e., complete pooling)

If $\kappa=0$: everybody is different; nothing is shared (i.e., no pooling)

We can fix a $\boldsymbol{\kappa}$ value based on our belief of how individuals are similar or different

A more Bayesian approach is to treat $\boldsymbol{\kappa}$ as an unknown, and use Bayesian inference to update our belief about κ

Generic prior by Kruschke (2015): $\kappa \sim \operatorname{Gamma}(0.01,0.01)$

Sometimes you may want a stronger prior like Gamma(1, 1), if it is unrealistic to do no pooling

Full Model

Model Stan code

Model:

$$
\begin{aligned}
& z_{j} \sim \operatorname{Bin}\left(N_{j}, \theta_{j}\right) \\
& \theta_{j} \sim \operatorname{Beta} 2(\mu, \kappa)
\end{aligned}
$$

Prior:

$\mu \sim \operatorname{Beta}(1.5,1.5)$
$\kappa \sim \operatorname{Gamma}(0.01,0.01)$

Posterior of Hyperparameters

library (bayesplot)
mcmc_dens(tt_fit, pars = c("mu", "kappa"))

Shrinkage

Multiple Comparisons?

Frequentist: family-wise error rate depends on the number of intended contrasts

Bayesian: only one posterior; hierarchical priors already express the possibility that groups are the same

Thus, Bayesian hierarchical model "completely solves the multiple comparisons problem." ${ }^{1}$
[1]: see https://statmodeling.stat.columbia.edu/2016/08/22/bayesian-inference-completely-
solves-the-multiple-comparisons-problem/
[2]: See more in ch 11.4 of Kruschke (2015)

Hierarchical Normal Model

Effect of coaching on SAT-V

School Treatment Effect Estimate Standard Error

A 28 15
B 8 10C -3-316
D 7 11
E -1 9
F 1 11
G 18 10
H 12 18

Model Stan code

Model:

$$
\begin{aligned}
d_{j} & \sim N\left(\theta_{j}, s_{j}\right) \\
\theta_{j} & \sim N(\mu, \tau)
\end{aligned}
$$

Prior:

$$
\begin{gathered}
\mu \sim N(0,100) \\
\tau \sim t_{4}^{+}(0,100)
\end{gathered}
$$

Prediction Interval

Posterior distribution of the true effect size of a new study, $\tilde{\theta}$

See https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm. 12 for an introductory paper on random-effect meta-analysis

