#### Hierarchical Models

PSYC 573

University of Southern California March 3, 2022

# Therapeutic Touch Example (N = 28)

#### Data Points From One Person

| $y\!\!:\!$ whether the guess of | Person S01 |        |
|---------------------------------|------------|--------|
| which hand was hovered over     |            |        |
| was correct                     |            | y s    |
|                                 |            | 1 S01  |
|                                 |            | 0 \$01 |

# **Binomial Model**

We can use a Bernoulli model:

 $y_i \sim \mathrm{Bern}( heta)$ 

for  $i=1,\ldots,N$ 

Assuming exchangeability given heta, more succint to write

 $z \sim {
m Bin}(N, heta)$ 

for  $z = \sum_{i=1}^N y_i$ 

- Bernoulli: Individual trial
- Binomial: total count of "1"s

1 success, 9 failures

Posterior: Beta(2, 10)



# Multiple People



We could repeat the binomial model for each of the 28 participants, to obtain posteriors for  $\theta_1, \ldots, \theta_{28}$ 

But . . .

Do we think our belief about  $heta_1$  would inform our belief about  $heta_2$ , etc?

After all, human beings share 99.9% of genetic makeup

# Three Positions of Pooling

- No pooling: each individual is completely different; inference of  $\theta_1$  should be independent of  $\theta_2$ , etc
- Complete pooling: each individual is exactly the same; just one heta instead of 28  $heta_j$ 's
- **Partial pooling**: each individual has something in common but also is somewhat different

# No Pooling



## Complete Pooling



### Partial Pooling



# Partial Pooling in Hierarchical Models

Hierarchical Priors:  $heta_j \sim ext{Beta2}(\mu,\kappa)$ 

Beta2: *reparameterized* Beta distribution

- mean  $\mu = a/(a+b)$
- concentration  $\kappa = a + b$

Expresses the prior belief:

Individual hetas follow a common Beta distribution with mean  $\mu$  and concentration  $\kappa$ 

If  $\kappa \to \infty$ : everyone is the same; no individual differences (i.e., complete pooling)

If  $\kappa = 0$ : everybody is different; nothing is shared (i.e., no pooling)

We can fix a  $\kappa$  value based on our belief of how individuals are similar or different

A more Bayesian approach is to treat  $\kappa$  as an unknown, and use Bayesian inference to update our belief about  $\kappa$ 

#### Generic prior by Kruschke (2015): $\kappa \sim$ Gamma(0.01, 0.01)



Sometimes you may want a stronger prior like Gamma(1, 1), if it is unrealistic to do no pooling

#### Full Model

Model Stan code

Model:

$$egin{split} z_j &\sim \mathrm{Bin}(N_j, heta_j) \ heta_j &\sim \mathrm{Beta2}(\mu,\kappa) \end{split}$$

Prior:

 $\mu \sim ext{Beta}(1.5, 1.5) \ \kappa \sim ext{Gamma}(0.01, 0.01)$ 

### Posterior of Hyperparameters

library(bayesplot)
mcmc\_dens(tt\_fit, pars = c("mu", "kappa"))



## Shrinkage



# Multiple Comparisons?

Frequentist: family-wise error rate depends on the number of intended contrasts

Bayesian: only one posterior; hierarchical priors already express the possibility that groups are the same

Thus, Bayesian hierarchical model "completely solves the multiple comparisons problem."<sup>1</sup>

[1]: see https://statmodeling.stat.columbia.edu/2016/08/22/bayesian-inference-completely-solves-the-multiple-comparisons-problem/

[2]: See more in ch 11.4 of Kruschke (2015)

## Hierarchical Normal Model

Effect of coaching on SAT-V

| School | Treatment Effect Estimate | Standard Error |
|--------|---------------------------|----------------|
| А      | 28                        | 15             |
| В      | 8                         | 10             |
| С      | -3                        | 16             |
| D      | 7                         | 11             |
| E      | -1                        | 9              |
| F      | 1                         | 11             |
| G      | 18                        | 10             |
| Н      | 12                        | 18             |

Model Stan code

Model:

$$egin{aligned} d_j &\sim N( heta_j, s_j) \ heta_j &\sim N(\mu, au) \end{aligned}$$

Prior:

 $\mu \sim N(0, 100) \ au \sim t_4^+(0, 100)$ 



21 / 22

## **Prediction Interval**

Posterior distribution of the true effect size of a new study, heta



See https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.12 for an introductory paper on random-effect meta-analysis