Bayes' Rule

University of Southern California January 25, 2022

Inverse Probability

Conditional probability:
$$P(A \mid B) = rac{P(A,B)}{P(B)}$$

which yields $P(A, B) = P(A \mid B)P(B)$ (joint = conditional \times marginal)

On the other side,
$$P(B \mid A) = rac{P(B,A)}{P(A)}$$

Bayes' Theorem

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

Which says how can go from $P(A \mid B)$ to $P(B \mid A)$

Consider $B_i \ (i=1,\ldots,n)$ as one of the many possible mutually exclusive events

$$egin{aligned} P(B_i \mid A) &= rac{P(A \mid B_i) P(B_i)}{P(A)} \ &= rac{P(A \mid B_i) P(B_i)}{\sum_{k=1}^n P(A \mid B_k) P(B_k)} \end{aligned}$$

A police officer stops a driver *at random* and does a breathalyzer test for the driver. The breathalyzer is known to detect true drunkenness 100% of the time, but in **1%** of the cases, it gives a *false positive* when the driver is sober. We also know that in general, for every **1,000** drivers passing through that spot, **one** is driving drunk. Suppose that the breathalyzer shows positive for the driver. What is the probability that the driver is truly drunk?

Gigerenzer (2004)

p value = P(data | hypothesis), not P(hypothesis | data)

- H_0 : the person is sober (not drunk)
- data: breathalyzer result

p = P(positive | sober) = 0.01 ightarrow reject H_0 at .05 level

However, as we have been, given that $P(H_0)$ is small, $P(H_0 \mid \mathrm{data})$ is still small

Bayesian Data Analysis

Bayes' Theorem in Data Analysis

- Bayesian statistics
 - $\circ\,$ more than applying Bayes's theorem
 - $\circ\,$ a way to quantify the plausibility of every possible value of some parameter $\theta\,$
 - E.g., population mean, regression coefficient, etc
 - $\circ\,$ Goal: update one's Belief about θ based on the observed data D

Going back to the example

Goal: Find the probability that the person is drunk, given the test result

Parameter (θ): drunk (values: drunk, sober)

Data (D): test (possible values: positive, negative)

Usually, the marginal is not given, so

$$P(heta \mid D) = rac{P(D \mid heta) P(heta)}{\sum_{ heta^*} P(D \mid heta^*) P(heta^*)}$$

- P(D) is also called *evidence*, or the *prior predictive* distribution
 - E.g., probability of a positive test, regardless of the drunk status

Example 2

shiny::runGitHub("plane_search", "marklhc")

- Try choosing different priors. How does your choice affect the posterior?
- Try adding more data. How does the number of data points affect the posterior?

The posterior is a synthesis of two sources of information: prior and data (likelihood)

Generally speaking, a narrower distribution (i.e., smaller variance) means more/stronger information

- Prior: narrower = more informative/strong
- Likelihood: narrower = more data/more informative

Setting Priors

- Flat, noninformative, vague
- Weakly informative: common sense, logic
- Informative: publicly agreed facts or theories

Prior beliefs used in data analysis must be admissible by a skeptical scientific audience (Kruschke, 2015, p. 115)

Likelihood/Model/Data $P(D \mid heta, M)$

Probability of observing the data **as a function of the parameter(s)**

- Also written as $L(heta \mid D)$ or L(heta;D) to emphasize it is a function of heta
- Also depends on a chosen model M: $P(D \mid heta, M)$

Likelihood of Multiple Data Points

1. Given D_1 , obtain *posterior* $P(\theta \mid D_1)$ 2. Use $P(\theta \mid D_1)$ as *prior*, given D_2 , obtain posterior $P(\theta \mid D_1, D_2)$

The posterior is the same as getting D_2 first then D_1 , or D_1 and D_2 together, if

- **data-order invariance** is satisfied, which means
- D_1 and D_2 are **exchangeable**

Joint distribution of the data does not depend on the order of the data

E.g., $P(D_1, D_2, D_3) = P(D_2, D_3, D_1) = P(D_3, D_2, D_1)$

Example of non-exchangeable data:

- First child = male, second = female vs. first = female, second
 = male
- D_1, D_2 from School 1; D_3, D_4 from School 2 vs. D_1, D_3 from School 1; D_2, D_4 from School 2

An Example With Binary Outcomes

Coin Flipping

Q: Estimate the probability that a coin gives a head

• heta: parameter, probability of a head

Flip a coin, showing head

• y=1 for showing head

How do you obtain the likelihood?

Bernoulli Likelihood

The likelihood depends on the probability model chosen

• Some models are commonly used, for historical/computational/statistical reasons

One natural way is the **Bernoulli model**

$$egin{aligned} P(y=1 \mid heta) &= heta \ P(y=0 \mid heta) &= 1 - heta \end{aligned}$$

The above requires separating y=1 and y=0. A more compact way is

$$P(y \mid heta) = heta^y (1 - heta)^{(1 - y)}$$

Multiple Observations

Assume the flips are exchangeable given heta,

$$egin{aligned} P(y_1,\ldots,y_N \mid heta) &= \prod_{i=1}^N P(y_i \mid heta) \ &= heta^{\sum_{i=1}^N y_i} (1- heta)^{\sum_{i=1}^N (1-y_i)} \ &= heta^z (1- heta)^{N-z} \end{aligned}$$

z = # of heads; N = # of flips

Note: the likelihood only depends on the number of heads, not the particular sequence of observations

Posterior

Same posterior, two ways to think about it

Prior belief, weighted by the likelihood

$$P(\theta \mid y) \propto \underbrace{P(y \mid heta)}_{ ext{weights}} P(heta)$$

Likelihood, weighted by the strength of prior belief

$$P(heta \mid y) \propto \underbrace{P(heta)}_{ ext{weights}} P(heta \mid y)$$

Posterior

Say
$$N$$
 = 4 and z = 1

E.g.,
$$P(heta \mid y_1 = 1) \propto P(y_1 = 1 \mid heta) P(heta)$$

For pedagogical purpose, we'll discretize the heta into [.05, .15, .25, ..., .95]

• Also called grid approximation

How About the Denominator?

Numerator: relative posterior plausibility of the heta values

We can avoid computing the denominator because

• The sum of the probabilities need to be 1

So, for **discrete** parameters:

 Posterior probability = relative plausibility / sum of relative plausibilities

However, the denominator is useful for computing the *Bayes factor*

Summarizing a Posterior Distribution

Simulate (i.e., draw samples) from the posterior distribution

R code Summary

```
th \leftarrow seq(.05, .95, by = .10)

pth \leftarrow c(.01, .055, .10, .145, .19, .19, .145, .10, .055, .07)

py_th \leftarrow th^1 * (1 - th)^4

pth_y_unscaled \leftarrow pth * py_th

pth_y \leftarrow pth_y_unscaled / sum(pth_y_unscaled)

post_samples \leftarrow sample(th,

size = 1000, replace = TRUE,

prob = pth_y

)
```

Influence of more samples

N = 40, *z* = 10

Influence of more informative priors

N = 4, *z* = 1

The prior needs to be well justified

Prior Predictive Distribution

Bayesian models are **generative**

Simulate data from the prior distribution to check whether the data fit our intuition

- Clearly impossible values/patterns?
- Overly restrictive?

 $P(y) = \int P(y| heta^*) P(heta^*) d heta^*$: Simulate a $heta^*$ from the prior, then simulate data based on $heta^*$

Criticism of Bayesian Methods

Criticism of "Subjectivity"

Main controversy: subjectivity in choosing a prior

• Two people with the same data can get different results because of different chosen priors

Counters to the Subjectivity Criticism

- With enough data, different priors hardly make a difference
- Prior: just a way to express the degree of ignorance
 - One can choose a weakly informative prior so that the Influence of subjective Belief is small

Counters to the Subjectivity Criticism 2

Subjectivity in choosing a prior is

- Same as in choosing a model, which is also done in frequentist statistics
- Relatively strong prior needs to be justified,
 - Open to critique from other researchers
- Inter-subjectivity \rightarrow Objectivity

Counters to the Subjectivity Criticism 3

The prior is a way to incorporate previous research efforts to accumulate scientific evidence

Why should we ignore all previous literature every time we conduct a new study?