Bayes' Rule PSYC 573

University of Southern California January 25, 2022

Inverse Probability

Conditional probability: $P(A \mid B)=\frac{P(A, B)}{P(B)}$
which yields $P(A, B)=P(A \mid B) P(B)$ (joint = conditional \times marginal)

On the other side, $P(B \mid A)=\frac{P(B, A)}{P(A)}$

Bayes' Theorem

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Which says how can go from $P(A \mid B)$ to $P(B \mid A)$
Consider $B_{i}(i=1, \ldots, n)$ as one of the many possible mutually exclusive events

$$
\begin{aligned}
P\left(B_{i} \mid A\right) & =\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{P(A)} \\
& =\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{\sum_{k=1}^{n} P\left(A \mid B_{k}\right) P\left(B_{k}\right)}
\end{aligned}
$$

A police officer stops a driver at random and does a breathalyzer test for the driver. The breathalyzer is known to detect true drunkenness 100% of the time, but in $\mathbf{1 \%}$ of the cases, it gives a false positive when the driver is sober. We also know that in general, for every $\mathbf{1 , 0 0 0}$ drivers passing through that spot, one is driving drunk. Suppose that the breathalyzer shows positive for the driver. What is the probability that the driver is truly drunk?

Gigerenzer (2004)

p value $=P($ data \mid hypothesis $)$, not P (hypothesis | data)

- H_{0} : the person is sober (not drunk)
- data: breathalyzer result
$p=P($ positive \mid sober $)=0.01 \rightarrow$ reject H_{0} at .05 level
However, as we have been, given that $P\left(H_{0}\right)$ is small, $P\left(H_{0} \mid\right.$ data $)$ is still small

Bayesian Data Analysis

Bayes' Theorem in Data Analysis

- Bayesian statistics
- more than applying Bayes's theorem
- a way to quantify the plausibility of every possible value of some parameter θ
- E.g., population mean, regression coefficient, etc
- Goal: update one's Belief about θ based on the observed data D

Going back to the example

Goal: Find the probability that the person is drunk, given the test result

Parameter (θ) : drunk (values: drunk, sober)
Data (D): test (possible values: positive, negative)
Bayes' theorem: $\underbrace{P(\theta \mid D)}_{\text {posterior }}=\underbrace{P(D \mid \theta)}_{\text {likelihood }} \underbrace{P(\theta)}_{\text {prior }} / \underbrace{P(D)}_{\text {marginal }}$

Usually, the marginal is not given, so

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{\sum_{\theta^{*}} P\left(D \mid \theta^{*}\right) P\left(\theta^{*}\right)}
$$

- $P(D)$ is also called evidence, or the prior predictive distribution
- E.g., probability of a positive test, regardless of the drunk status

Example 2

shiny:: runGitHub("plane_search", "marklhc")

- Try choosing different priors. How does your choice affect the posterior?
- Try adding more data. How does the number of data points affect the posterior?

The posterior is a synthesis of two sources of information: prior and data (likelihood)

Generally speaking, a narrower distribution (i.e., smaller variance) means more/stronger information

- Prior: narrower = more informative/strong
- Likelihood: narrower = more data/more informative

Setting Priors

- Flat, noninformative, vague
- Weakly informative: common sense, logic
- Informative: publicly agreed facts or theories

Prior beliefs used in data analysis must be admissible by a skeptical scientific audience (Kruschke, 2015, p. 115)

Likelihood/Model/Data $P(D \mid \theta, M)$

Probability of observing the data as a function of the parameter(s)

- Also written as $L(\theta \mid D)$ or $L(\theta ; D)$ to emphasize it is a function of θ
- Also depends on a chosen model $M: P(D \mid \theta, M)$

Likelihood of Multiple Data Points

1. Given D_{1}, obtain posterior $P\left(\theta \mid D_{1}\right)$
2. Use $P\left(\theta \mid D_{1}\right)$ as prior, given D_{2}, obtain posterior $P\left(\theta \mid D_{1}, D_{2}\right)$

The posterior is the same as getting D_{2} first then D_{1}, or D_{1} and D_{2} together, if

- data-order invariance is satisfied, which means
- D_{1} and D_{2} are exchangeable

Joint distribution of the data does not depend on the order of the data

$$
\text { E.g., } P\left(D_{1}, D_{2}, D_{3}\right)=P\left(D_{2}, D_{3}, D_{1}\right)=P\left(D_{3}, D_{2}, D_{1}\right)
$$

Example of non-exchangeable data:

- First child = male, second = female vs. first = female, second = male
- D_{1}, D_{2} from School 1; D_{3}, D_{4} from School 2 vs. D_{1}, D_{3} from School 1; D_{2}, D_{4} from School 2

An Example With Binary Outcomes

Coin Flipping

Q: Estimate the probability that a coin gives a head

- θ : parameter, probability of a head

Flip a coin, showing head

- $y=1$ for showing head

How do you obtain the likelihood?

Bernoulli Likelihood

The likelihood depends on the probability model chosen

- Some models are commonly used, for historical/computational/statistical reasons

One natural way is the Bernoulli model

$$
\begin{aligned}
& P(y=1 \mid \theta)=\theta \\
& P(y=0 \mid \theta)=1-\theta
\end{aligned}
$$

The above requires separating $y=1$ and $y=0$. A more compact way is

$$
P(y \mid \theta)=\theta^{y}(1-\theta)^{(1-y)}
$$

Multiple Observations

Assume the flips are exchangeable given θ,

$$
\begin{aligned}
P\left(y_{1}, \ldots, y_{N} \mid \theta\right) & =\prod_{i=1}^{N} P\left(y_{i} \mid \theta\right) \\
& =\theta^{\sum_{i=1}^{N} y_{i}}(1-\theta)^{\sum_{i=1}^{N}\left(1-y_{i}\right)} \\
& =\theta^{z}(1-\theta)^{N-z}
\end{aligned}
$$

$z=\#$ of heads; $N=\#$ of flips
Note: the likelihood only depends on the number of heads, not the particular sequence of observations

Posterior

Same posterior, two ways to think about it
Prior belief, weighted by the likelihood

$$
P(\theta \mid y) \propto \underbrace{P(y \mid \theta)}_{\text {weights }} P(\theta)
$$

Likelihood, weighted by the strength of prior belief

$$
P(\theta \mid y) \propto \underbrace{P(\theta)}_{\text {weights }} P(\theta \mid y)
$$

Posterior

Say $N=4$ and $z=1$

$$
\text { E.g., } P\left(\theta \mid y_{1}=1\right) \propto P\left(y_{1}=1 \mid \theta\right) P(\theta)
$$

For pedagogical purpose, we'll discretize the θ into $[.05, .15, .25, \ldots, .95]$

- Also called grid approximation

How About the Denominator?

Numerator: relative posterior plausibility of the θ values
We can avoid computing the denominator because

- The sum of the probabilities need to be 1

So, for discrete parameters:

- Posterior probabilitiy = relative plausibility / sum of relative plausibilities

However, the denominator is useful for computing the Bayes factor

Summarizing a Posterior Distribution

Simulate (i.e., draw samples) from the posterior distribution

R code Summary

```
th}\leftarrow\operatorname{seq}(.05,.95, by = .10)
pth \leftarrowc(.01, .055, .10, . 145, .19, .19, .145, .10, .055, .0:
py_th \leftarrow th^1 * (1 - th)^4
pth_y_unscaled \leftarrow pth * py_th
pth_y \leftarrow pth_y_unscaled / sum(pth_y_unscaled)
post_samples \leftarrow sample(th,
    size = 1000, replace = TRUE,
    prob = pth_y
)
```


Influence of more samples

$$
N=40, z=10
$$

Prior x Likelihood

Influence of more informative priors

$N=4, z=1$

The prior needs to be well justified

Prior Predictive Distribution

Bayesian models are generative

Simulate data from the prior distribution to check whether the data fit our intuition

- Clearly impossible values/patterns?
- Overly restrictive?
$P(y)=\int P\left(y \mid \theta^{*}\right) P\left(\theta^{*}\right) d \theta^{*}$: Simulate a θ^{*} from the prior, then simulate data based on θ^{*}

Criticism of Bayesian Methods

Criticism of "Subjectivity"

Main controversy: subjectivity in choosing a prior

- Two people with the same data can get different results because of different chosen priors

Counters to the Subjectivity Criticism

- With enough data, different priors hardly make a difference
- Prior: just a way to express the degree of ignorance
- One can choose a weakly informative prior so that the Influence of subjective Belief is small

Counters to the Subjectivity Criticism 2

Subjectivity in choosing a prior is

- Same as in choosing a model, which is also done in frequentist statistics
- Relatively strong prior needs to be justified,
- Open to critique from other researchers
- Inter-subjectivity \rightarrow Objectivity

Counters to the Subjectivity Criticism 3

The prior is a way to incorporate previous research efforts to accumulate scientific evidence

Why should we ignore all previous literature every time we conduct a new study?

